					100	100	150	1
Reg. No.:			2 2	1		13.5		
1008.110		- 1	8-0					

Question Paper Code: 60452

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fifth Semester

Electronics and Communication Engineering

EC 2301/EC 51 — DIGITAL COMMUNICATION

(Regulations 2008)

(Common to PTEC 2301 — Digital Communication for B.E. (Part-Time) Fourth Semester – Electronics and Communication Engineering – Regulations 2009)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define measure of information.
- 2. What is meant by symmetric channel?
- 3. State Nyquist sampling theorem.
- 4. Why is quantisation needed in coding the samples?
- 5. What is line coding?
- 6. Define code rate of a block code.
- 7. A 64 kbps binary PCM polar NRZ signal is passed through a communication system with a raised-cosine filter with roll-off factor 0.25. Find the bandwidth of the filtered PCM signal.
- 8. State any two applications of eye pattern.
- 9. What are coherent and non coherent receivers?
- 10. What is memory-less modulation? Give examples of two such methods.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	(i) Explain the various analog pulse communication system describin their advantages and drawbacks. (8					
		(ii)	Describe how channels can be classified and briefly explain each.	(8)				
			Or					
	(b)	(i)	Describe the elements of a digital communication system.	(8)				
		(ii)	Explain the mathematical models of various communicate channels.	ion (8)				
12.	(a)	(i) ·	Explain what is natural sampling and flat-top sampling.	(6)				
		(ii)	With neat block diagram, pulse code modulation and demodulat system.	ion (10)				
			Or					
	(b)	(i)	Explain the noises in delta in modulation systems. How to overco this effect in Delta modulation?	me (8)				
		(ii)	Draw the block diagram of adaptive sub-band coding scheme speech signal and explain.	for (8)				
13.	(a)		ve the expression for power spectral density of unipolar NRZ l Hence discuss its characteristics.	ine				
			Or					
	(b)	(i)	Design a block code for a message block of size eight that correct for single errors.	can (6)				
		(ii)	Design a convolutional coder of constraint length 6 and r	ate				
			efficiency $\frac{1}{2}$. Draw its tree diagram and trellis diagram. (10)				
14.	(a)	(i)	Explain the bit synchronisation. (10)				
		(ii)	Write notes on eye diagram.	(6)				
			Or					
	(b)	Discu	uss Nyquist solutions to eliminate ISI.					
15.	(a).	Deriv	ve the bit error probability of coherent ASK, FSK, PSK receivers.					
			Or					
	(b)	Deriv	ve the bit error probability of QPSK Receiver.					